

Selected topics in Advanced Machine Learning

+ Objectives

- Machine Learning: Review
- Missing Values Treatment
- Outlier Detection

+ Review: (What is Machine Learning?)

• "A Computer program is said to Learn from Experience with respect to some class of Task T and Performance measure P, if its performance at task in T, as measured by P, improves with experience E".

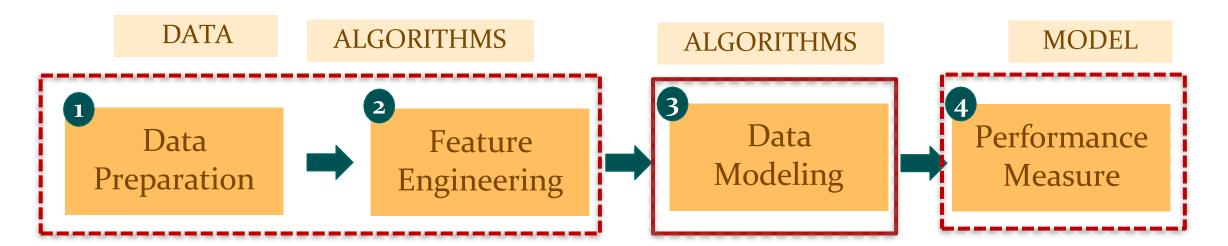
Tom M. Mitchel, Computer Scientist, 1997

What is Machine Learning Model?

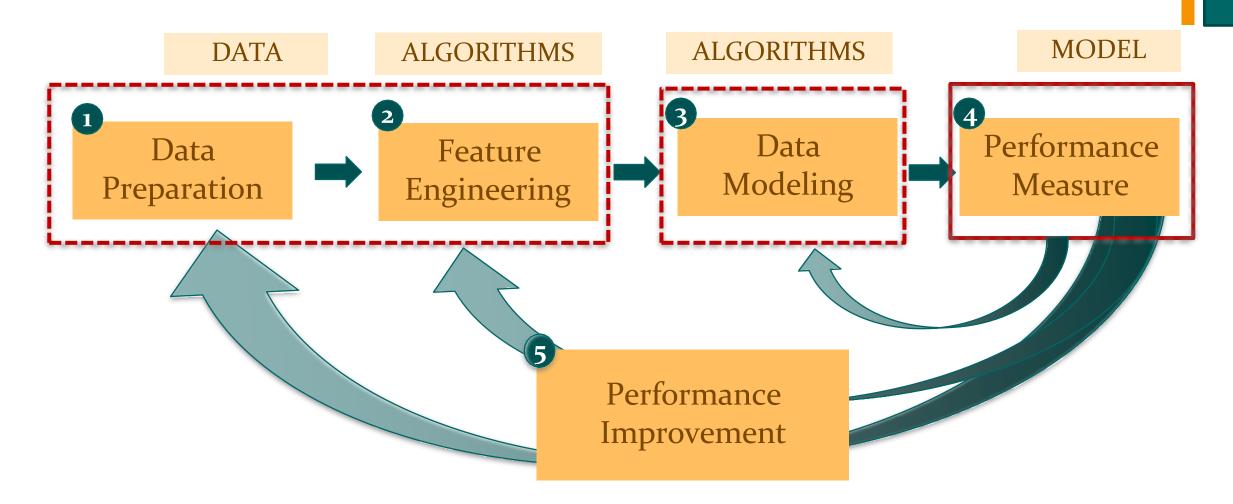
- "A Machine Learning model intends to determine the optimal structure in a dataset to achieve an assigned task.
- It results from Learning algorithms applied on a training dataset.

Machine Learning Model

■ Machine Learning Model contains 4 basic steps.



+ Machine Learning Model • Machine Learning Model is an iterative process.



• Until the model reaches a satisfying performance!

+Machine Learning Model

1

Data Preparation

- How can you *import* your *raw* data?
- What are the most common data cleaning methods?

2

Feature Engineering

- How do you *turn raw data* into *relevant data*?
- Turing data to *meaningful* for a *learning algorithm*?
- How can you make the *difference* between *useful* and *useless* data in a huge dataset?

Data Modeling

- What are the different types of *machine learning algorithms*?
- Which one should you *choose* to build your model?

+Machine Learning Model

4

Performance Measure

- What is the *right method* to *access the performance* of your ML algorithm?
- Which *indicator* should you *use*?

5

Performance Improvement

- What are the *reasons why your ML model is not performing well*?
- What are the *most common techniques to improve the performance*?

Three Things about ML

- Feature: Representation of raw data
- *Model*: Mathematical summary of features
- *Making Something that work:* Choosing the right model and features, given data and Task

+ What is Features?

- The initial pick of feature is always an expression of prior knowledge.
- *Images* → pixels, contours, textures, etc.
- $Signal \rightarrow samples$, spectrograms, etc.
- **Time series** → ticks, trends, reversals, etc.
- *Biological data* \rightarrow DNA, marker sequences, genes, etc.
- *Text data* → words, grammatical classes and relations, etc.

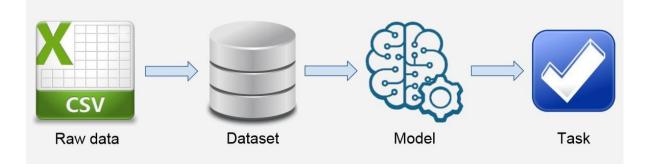
+ Problem: Where to focus attention?

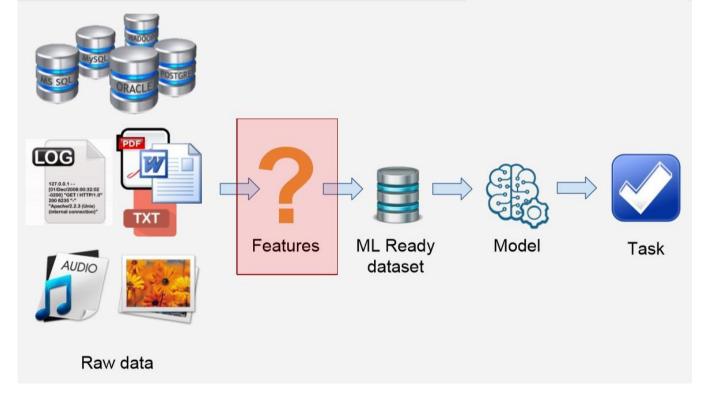
- Garbage In Garbage Out (GIGO)
- "Sometimes, less is better!".

- A universal problem of intelligent (learning) agents is where to focus their attention.
- What aspects of the problem at hand are important/necessary to solve it?
- Discriminate between the relevant and irrelevant parts of experience.

+ Dream Vs. Reality

DREAM





+ Missing Values Treatment

- Why missing value treatment is required?
- Why data has missing values?
- Which are the methods to treat missing value?

January 24, 2022 12

+ Missing Values Treatment

- Missing values are representative of the *messiness* of real-world data.
- There can be a *multitude of reasons* why they occur—ranging from
 - human errors during data entry,
 - incorrect sensor readings,
 - to *software bugs* in the data processing pipeline.
- Treating missing data is the fundamental and core element for the data analysis and / or machine learning

+ Why missing values treatment is required?

- Missing data in the training data set can reduce the power / fit of a model or can lead to a biased model because we have not analysed the behaviour and relationship with other variables correctly.
- It can lead to wrong prediction or classification.
- Example:

Results with not treated missing values. The inference from this data set is that the chances of playing cricket by males is higher than females.

Name	Weight	Gender	Play Cricket/ Not
Mr. Amit	58	M	Y
Mr. Anil	61	M	Y
Miss Swati	58	F	N
Miss Richa	55		Y
Mr. Steve	55	M	N
Miss Reena	64	F	Y
Miss Rashmi	57		Y
Mr. Kunal	57	M	N

Gender	#Students	#Play Cricket	%Play Cricket
F	2	1	50%
M	4	2	50%
Missing	2	2	100%

Name	Weight	Gender	Play Cricket/ Not
Mr. Amit	58	M	Υ
Mr. Anil	61	M	Υ
Miss Swati	58	F	N
Miss Richa	55	F	Υ
Mr. Steve	55	M	N
Miss Reena	64	F	Υ
Miss Rashmi	57	F	Υ
Mr. Kunal	57	M	N

Gender	#Students	#Play Cricket	%Play Cricket
F	4	3	75%
М	4	2	50%

Result with treated missing values, we can see that females have higher chances of playing cricket compared to males.

+ Dealing With Missing Values

■ Some of your columns will *certainly* contains *missing values*, often represented as '*NaN'*, *empty column, zeros*.

$$Compute\ Ratio(Missing\ Values)R_m = \frac{Number\ of\ Missing\ Values}{Total\ Number\ of\ Values}$$

- If R_m is high, You might need to remove the whole Column.
- If R_m is *reasonable low*, to *avoid losing data*, you can *impute* the *mean*, the *median* or the *most frequent* value in place of the missing value

+ Methods to Treat Missing Values?

- The best is to get the actual value that was missing by going back to the Data Extraction & Collection stage and correcting possible errors during these stages.
 - Which is not possible in most of the cases

- There are *two main* techniques to treat missing data.
 - Deletion
 - Imputation

+ 1. Deletion

- Unless the nature of missing data is 'Missing completely at random', the best avoidable method in many cases is deletion.
- *Listwise:* In this case, rows containing missing variables are deleted. It suffers the *maximum* information loss.

Pairwise: In this case, only the missing observations are
ignored, and analysis is done on variables present. The
problem is that even though it takes the available cases,
one can't compare analyses because the sample is
different every time.

User	Device	OS	Transactions
A	Mobile	NA	-5
В	Mobile	Android	3
E	NA	ios	2
D	Tablet	Android	1
E	Mobile	ios	4

User	Device	OS	Transactions
Α	Mobile -	NA	- 5
В	Mobile	Android	3
С	-NA	ios	2
D	Tablet	Android	1
E	Mobile	ios	4

■ **Deleting Columns:** In most cases if the missing data constitutes more than 90% of the data then the column is dropped as it would not contribute to the mode.

+2. Imputation

- Replacing With Mean/Median/Mode
- Assigning A Unique Category
- Assigning A Most frequent Value
- Using Algorithms Which Support Missing Values

+ 1. Replacing With Mean/Median/Mode

- This strategy can be applied on a *feature* which has *numeric data* like the age of a person or the ticket fare.
- We can calculate the mean, median or mode of the feature and replace it with the missing values.
- This is an *approximation* which can add *variance* to the data set.
- It is a statistical approach of handling the missing values

OS	Revenue
Android	1,804
iOS	3,027
iOS	8,788
Android	NA
Android	3,735
Android	1,056
iOS	9,319
Android	6,199
Android	2,235
iOS	NA
Android	1,146

OS	Global Mean	Group Mean
Android	1,804	1,804
iOS	3,027	3,027
iOS	8,788	8,788
Android	4,145	2,696
Android	3,735	3,735
Android	1,056	1,056
iOS	9,319	9,319
Android	6,199	6,199
Android	2,235	2,235
iOS	4,145	7,045
Android	1,146	1,146

+ 2. Assigning a Unique Category

- A categorical feature will have a definite number of possibilities, such as gender, for example.
- Since they have a definite number of classes, we can assign another class for the missing values.
- Missing values can be treated as a separate category by itself.
- The missing values which can be replaced with a new category, say, *U for 'unknown*'.
- This strategy will *add more information* into the dataset which will *result in the change of variance*.

3. Assigning a Most frequent Value

■ **Frequent Value:** The standard thing to do is to replace the missing entry with the most frequent one

4. Using Prediction Algorithm

- **Prediction models:** We can create a predictive model to estimate values that will substitute the missing data.
- KNN is a machine learning algorithm which works on the principle of *distance measure*.
- This algorithm can be used when there are nulls present in the dataset.
- While the algorithm is applied, KNN considers the missing values by taking *the majority of the K nearest values*.
- RandomForest: This model produces a robust result because it works well on non-linear and the categorical data.
- It adapts to the data structure taking into consideration of the high variance or the bias, producing better results on large datasets.

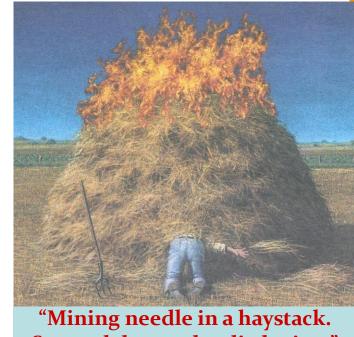
+ • Outlier Detection

- Outliers and Outlier Analysis
- What Are Outliers?
- Types of Outliers
- Challenges of Outlier Detection
- Outlier Detection Methods
- Application of Outlier Detection
- Evaluation

January 24, 2022 2

+ Anomalies / Outliers

- We are drowning in the deluge of data that are being collected world-wide, while starving for knowledge at the same time*
- Anomalous events occur relatively infrequently
- However, when they do occur, their consequences can be quite dramatic and quite often in a negative sense



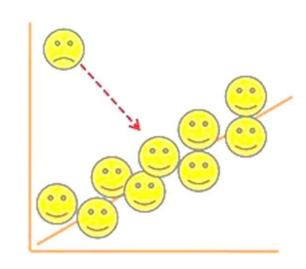
So much hay and so little time"

■ Anomaly is a pattern in the data that does not conform to the expected behavior also referred to as outliers

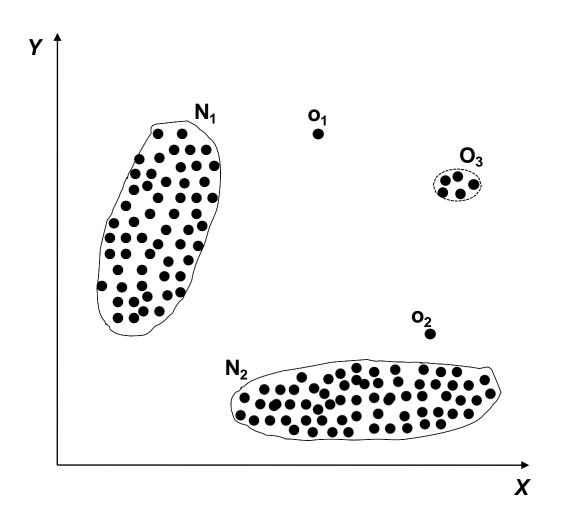
+ What is an Outlier?

- Outlier is a commonly used terminology by analysts and data scientists as it needs close attention else it can result in wildly wrong estimations.
- Simply speaking, Outlier is an observation that appears far *away* and *diverges* from an *overall pattern* in a sample.

How do you even detect the presence of outliers and how extreme they are?



+ Example



- N_1 and N_2 are regions of normal behavior
- Points **o**₁ and **o**₂ are anomalies
- Points in region O₃ are anomalies
- Example: Age of a person

+ Anomalies/Outliers

- What are outliers?
 - An outlier is a *data object* that *deviates significantly* from the *rest of the objects,* as if it were generated by a *different mechanism*.
 - We may refer to data objects that are not outliers as "normal" or expected data. Similarly, we may refer to outliers as "abnormal" data.
- Also referred to as outliers, exceptions, peculiarities, surprise, etc.
- Outliers are different from noisy data
- "What is noise?"
 - Noise is a *random error* or *variance* in a measured variable.
- Outliers are interesting: an outlier violates the mechanism that generates the normal data.
- Noise is *not interesting* in data *analysis*.

+ Anomalies/Outliers

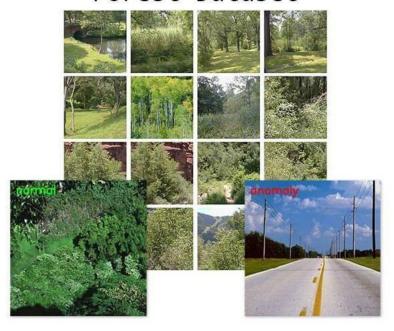
- Outliers are *interesting* because they are *suspected* of *not* being *generated* by the *same* mechanisms as the rest of the data.
- Therefore, in outlier detection, it is important to *justify why the outliers detected are* generated by some other mechanisms.
- This is often achieved by making various assumptions on the rest of the data and showing that the outliers detected violate those assumptions significantly.

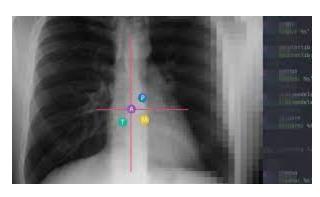
+ Novelty Detection

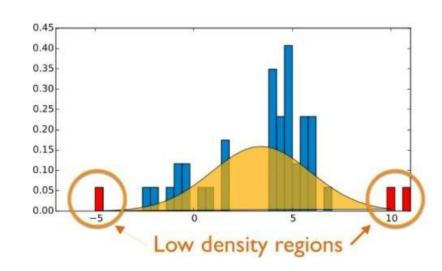
- Outlier detection is also related to novelty detection in evolving data sets.
- For example, by monitoring a social media web site where new content is incoming, novelty detection may identify new topics and trends in a timely manner.
- Novel topics may initially appear as outliers.
- To this extent, *outlier detection and novelty detection* share some similarity in *modeling* and *detection* methods.
- However, a critical difference between the two is that in novelty detection, once new topics are confirmed, they are usually incorporated into the model of normal behavior so that follow-up instances are not treated as outliers anymore

+ Outliers/Anomalies

Forest Dataset







+ Related problems

- Rare Class Mining
- Chance discovery
- Novelty Detection
- Exception Mining

+ Key Challenges

- Defining a representative normal region is challenging.
- The **boundary** between **normal** and **outlying** behavior is often **not precise**.
- The exact notion of an outlier is different for different application domains.
- Availability of labeled data for training/validation
- Malicious adversaries
- Data might contain *noise*.
- Normal behavior keeps evolving.

End of Lecture – 02